Mario Blunk / electronics and IT engineering
Buchfinkenweg 5
99102 Erfurt

Germany

cellular +49 (0)176 2904 5855
office phone +49 (0361) 5189 618
email marioblunk@arcor.de

homepage http://www.train-z.de

How To Program The Z80 Serial I/0 (SIO) and CTC Date: 2010-03-31
Document Version 2.1

Contents
LI =T 0 0T F= U LY/ Yo [P EEPPPR 2
1.1 Desired Communication MeChaniSmM...........c..uuuiiiiiiii i 2
1.2 SIO Device Structure and external WiriNg..........coeeceeeeiiereriie e 3
L 220 B LY o TR 3
LIRC I ad (0T [=10 010 011 0o TR PSP PPPPPT 5
I T8 N o 1= T [PPt 5
1.3.2 Interrupt Vector TabIe...........ue oo 5
1.3.3 Initializing the SIO........ e 6
1.3.4 Initializing the CTC.....oo e 7
1.3.5 Initializing the CPU.....c e 7
1.3.6 Hardware FIOW CONtrol.........ccocuiiiiiieiiie et 8
1.3.7 Disabling SIO RX-Channel...........coui i 8
1.3.8 Interrupt Service ROULINES.........ueiiiiiee e 9
1.3.9 Transmission of a character to the hoSt........ccoooeeiiiiiii 10
2 File Transfer MOGE.oo ottt e e e e e e e e e e e e e s nnnneeeeeeeeennnnns 11
2.1 Desired Communication MeChaniSM..........ccuuveiiiiiiiiiiiiiieee e 11
2.2 ProgrammiNg.......o e oottt e e e e e e e r e e e e r e e e e e annnn 12
P22 I o == T =T RSP 12
2.2.2 Interrupt VECIOr TabIe........coiiiieee e 12
2.2.3 Initializing the CTC......eeiiie e 12
2.2.4 Initializing the CPU.......oo e e e e e e 13
2.2.5 X-Modem File Transfer......cccue oo 13
2.2.5.1 Host triggered transfer and SetUP..........ueeeeriiiiei i 13
2.2.5.2 SUBIOULINES.....euiieiiiee et e e e e e e e e e e e e e e eeennne 17
3 Z80 IC equivalents table....... .o 18
4 USEIUI LINKS...ci ettt eaaaaaaeees 19
5 FUMhEr REAAING. e e e e e e e e eeeeeas 19
G Yo7 P>l o 1= PP 19

http://www.train-z.de/

Preface

The Z80 SIO is the most powerful 1/0 device of the Z80 product family. The official ZiLOG-
datasheet gives a good overall view of all the features of this device but lacks a tutorial like
approach and programming examples in assembly language.

This document aims to make the Z80 processor system popular again since a lot of
valuable literature and expertise has vanished from the public because of more
sophisticated processor architectures of the present.

Remarkably ZiLOG still produces the ICs of the Z80 family — since the late seventies !

Part one of this document describes how to program the SIO so that it communicates with
a PC in asynchronous terminal mode whereas part two focuses on the block transfer mode
used for file transmission. Also slightly touched in this document is the CTC programming
and implementation of an interrupt mechanism.

There is no special focus on hardware issues like device selection, pin characteristics or
ratings. Please refer to the official ZiILOG datasheets at www.zilog.com or www.z80.info .

The code examples shown here provide by far not the best performance and robustness.
Therefore | appreciate every hint or critics to improve the quality of this document.

1 Terminal Mode

1.1 Desired Communication Mechanism

We want to program the SIO for asynchronous RS232 terminal mode with these
parameters:

Baudrate: 9600 Baud/sec

Stopbits: 1

Startbits: 1
Character length: 8 bit
Parity: none

In terminal mode the host computer (in our case the PC with any terminal program like
Minicom or Hyper Terminal and an RS232 interface) communicates with the client (the
Z80-SI0O) character based via a so called Null-Modem-Cable. The host transmits one or
more characters to the client, whereupon the client echoes this character back to the host
and processes it. The host displays the echoed character on its screen. If the host does
not “hear” the echoed character the communication is faulty.

http://www.z80.info/
http://www.zilog.com/

Special attention is to be paid to the flow control scheme which is hardware based. In
general this is called “RTSCTS” or just “hardware flow control”. This method allows
transmission of all 8-bit-characters (so called binary mode) and prevents overrunning of
one of the peers in case on of them is to slow. In this document | assume the host PC is
much faster than the client.

The wiring of the null modem cable used here has following connections between its
female 9 pin D-Sub connectors:

1-4/4-1 cross wired DTR and DCD
2-3/3-2 cross wired TxD and RxD

5-5 signal ground (GND)
7-8/8-7 cross wird RTC and CTS

9-9 ring indicator (R, not used here)

1.2 SIO Device Structure and external wiring

Figure 1 shows the block diagram of the device with the blocks and signals needed for our
example outlined in red. Figure 2 shows the data paths within the SIO. Marked in red are
the blocks we need for asynchronous mode.

1.21 Wiring

Data and control: These are the Z80 bus signals D[7:0], A[1:0], /RD, /IOREQ,
/RESET, /CE and CLK.

Interrupt Control Lines: /M1, /INT connected to CPU, IEl and IEO daisy chained to other

periphery
Serial Data: TxD and RxD going towards host computer'
Channel Clocks: TxCA and RxCA driven by CTC channel output TOO

Modem or other Controls: CTS, RTS, DTR, DCD used for hardware flow control

miscellaneous: /SYNC not used, pulled high by 10k resistor
/Wait/Ready comes out of the device. It is to be connected to
the WAIT-Input of the Z80-CPU. By asserting this signal the SIO
tells the CPU to wait until the SIO has completed a character
transfer. For this example we do not make use of this
connection.

1 Usually these signals are not connected directly to the host but via diver devices like MAX232, 1488, 1489
or similar level converters.

—e .
> [Seria Daa|
__> Channel A 4_‘| Channel Clocks |
+5V GND @ International Channel A A %
+ + * Control Read/Write —® | Wait/Ready
Logic Registers -
Discrete
LXK :> Control and t mocﬂﬁg}
Status _= Controls
Data (Channel A)
cPU <
Control Bus /0 Discrete
Control and t (r;’]rocﬂﬁg}
:: > Status
\/. (Channel B) :: Controls
International Channel B
Control Read/Write | .
Logic Registers it— SelELDat
+++ :r\V Channel B "‘—‘ Channel Clocks
Interrupt < SYNC
Comrcﬂ —» Wait/Ready
Lines
Figure 1: Block Diagram
CPU VO

/O Data Buffer

4

WR7
SYNC
Data Register

FIFO FIFO
N

Internal Data Bus

fr 1

Receive

4

Transmit
Data

4

2

SYNC
Register

J

Receive

| 20-Bit Transmit Shift Register 1 Start Bit |
Hunt Mode (BISYNC) Receive ASYNC Data
R R P) = SYNC Data Transmit
Lagic Multipl
SDLC Data PICxer
: v : and —’r TxDA
A 7 | ——————— 3| 2-Bit
SYNC Receive o | syne-cre Delay
RxDA —3p~| 1.pit Register {433 Bits [=] s R R ————
Delay and Zero (8 Bits)
Delete + + + * % SDLC-CRC
SYNC- =
Transmit —_—
ERC CRC Clock Logic - TCh
ASYNC Data Generator [~
— CRC Delay
O eceive 3
RxCA —3-| Clock Register
Logic (8 Bits)
CRC
_b.
SDLC.CRC Checker | CRC Result

Figure 2: Data Path

1.3 Programming

Tree problems have to be solved: initializing the SIO, implementing the interrupt
mechanism, echoing the received character, transmitting a character and turning on/off the
SIO RX-channel in certain situations.

1.3.1 Header

The header show below defines the hardware addresses of the data and control port of

your SIO and the address of your CTC channel 0. My hardware here uses the addresses
0x4, 0x6 and 0x0.

SIO_A_D equ 4h
SIO_A_C equ 6h
CHO equ Oh

Text 1: header

1.3.2 Interrupt Vector Table

Every time the SIO receives a character it requests an interrupt causing the CPU to jump
to the memory address specified by the term RX_CHA_AVAILABLE. Special receive
conditions like receiver buffer overrun cause a jump to location SPEC_RX_CONDITION.

INT_VEC:
org 0Ch
DEFW RX_CHA_AVAILABLE
org OEh
DEFW SPEC_RX_CONDITON

Text 2: SIO interrupt vector table

1.3.3 Initializing the SIO

First we have to configure the SIO using the sequence shown in Text 3. For detailed
information on the purpose of certain registers and control bits please read the SIO
datasheet. We operate the SIO in interrupt mode “interrupt on all received characters”.

SIO_A_RESET:
;setup TX and RX:
Id a,00110000b :write into WRO: error reset, select WR0
out (SIO_A _C),A

Id a,018h :write into WRO: channel reset
out (SIO_A _C),A

Id a,004h :write into WRO: select WR4
out (SIO_A_C),A
Id a,44h ;44h write into WR4: clkx16,1 stop bit, no parity

out (SIO_A_C),A

Id a,005h :write into WRO: select WR5
out (SIO_A_C)A
Id a,0E8h ;DTR active, TX 8bit, BREAK off, TX on, RTS inactive

out (SIO_A_C),A

Id a,01h :write into WRO: select WR1
out (SIO_B_C),A
Id a,00000100b ;no interruptin CH B, special RX condition affects vect

out (SIO_B_C),A

Id a,02h :write into WRO: select WR2
out (SIO_B_C),A
Id a,0h ;write into WR2: cmd line int vect (see int vec table)

;bits D3,D2,D1 are changed according to RX condition
out (SIO_B_C),A

Id a,01h :write into WRO: select WR1
out (SIO_A_C),A
Id a,00011000b ;interrupt on all RX characters, parity is not a spec RX condition

;buffer overrun is a spec RX condition
out (SIO_A_C),A

SIO_A_El:
;enable SIO channel A RX
Id a,003h :write into WRO: select WR3
out (SIO_A _C),A
Id a,0C1h ;RX 8bit, auto enable off, RX on

out (SIO_A_C)A
:Channel A RX active
RET

Text 3: configure the SIO

1.3.4 Initializing the CTC

The CTC channel 0 provides the receive and transmit clock for the SIO.

INI_CTC:

;init CHO
;CHO provides SIO A RX/TX clock

Id A,00000111b ; int off, timer on, prescaler=16, don't care ext. TRG edge,
; start timer on loading constant, time constant follows
; sw-rst active, this is a ctrl cmd

out (CHO0),A

Id A2h ; ime constant defined

out (CHO0),A ;and loaded into channel 0

; TOO outputs frequency=CLK/2/16/(time constant)/2
; which results in 9600 bits per sec

Text 4: configuring the CTC channel 0

1.3.5 Initializing the CPU

The CPU is to run in interrupt mode 2. See Text 5 below. This has to be done after
initializing SIO and CTC.

INT_INI:
Id A0
Id LA jjoad | reg with zero
im 2 ;setintmode 2
ei ;enable interupt

Text 5: set up the CPU interrupt mode 2

1.3.6 Hardware Flow Control

In order to signal the host whether the client is ready or not to receive a character the RTS
line coming out of the client (and driving towards the host) needs to be switched. As earlier
said | assume the host is much faster than the client, that why | do not implement a routine
to check the CTS-line coming from the host.

A RTS_OFF:
Id a,005h write into WRO: select WR5
out (SIO_A_C),A
Id a,0E8h ;DTR active, TX 8bit, BREAK off, TX on, RTS inactive

out (SIO_A_C),A
ret

A RTS_ ON:
Id a,005h write into WRO: select WR5
out (SIO_A_C),A
Id a,0EAh ;DTR active, TX 8bit, BREAK off, TX on, RTS active

out (SIO_A_C),A
ret

Text 6: signaling the host go or nogo for reception

1.3.7 Disabling SIO RX-channel

When certain conditions arise it might by important to disable the receive channel of the
SIO (see routine in Text 7).

SIO_A DI:
disable SIO channel A RX
Id a,003h ;write into WRO: select WR3
out (SIO_A_C),A
Id a,0C0h ;RX 8bit, auto enable off, RX off

out (SIO_A_C),A
;Channel A RX inactive
ret

Text 7: Disabling the SIO

1.3.8 Interrupt Service Routines

Upon reception of a character the routine RX_CHA_AVAILABLE shown in Text 8 is
executed. Here you get the character set by the host. In the end of this routine, the
character is sent back to the host by a simple single command

out (SIO_A D),A

Note: In this example we backup only register AF. Depending on your application you
might be required to backup more registers like HL, DE, CD, ...

Routine SPEC_RX_CONDITION is executed upon a special receive condition like buffer
overrun. In my example the CPU is to jump at the warmstart location 0x0000.

RX_CHA_AVAILABLE:

push AF jbackup AF
call A_RTS_OFF
in A,SIO_A_D) read RX character into A

; A holds received character
;do something with the received character

;echo character to host

out (SIO_A_D),A

call TX_EMP

ei ;see comments below
call A RTS ON ;see comments below
pop AF restore AF

Reti

SPEC_RX_CONDITON:
i 0000h

Text 8: character received routine

Note: The code written in red might be required if you want the CPU to be ready for
another interrupt (ei) and to give the host a go for another transmission (call A_RTS_ON).

| recommend to put these two lines not here but in your main program routine that
processes the characters received by the SIO. This way you process one character after
another and avoid overrunning your SIO RX buffer.

1.3.9 Transmission of a character to the host
In general transmitting of a character is done by the single command
out (SIO_A D),A

as written in Text 8. To make sure the character has been sent completely the transmit
buffer needs to be checked if it is empty. The general routine to achieve this is shown in
Text 9.

TX_EMP:
; check for TX buffer empty
sub a clear a, write into WRO: select RRO
inc a ;select RR1
out (SIO_A_C),A
in A,SIO_A_C) ;read RRx
bit 0,A
ip z,TX_EMP

ret

Text 9: transmitting a character to host

10

2 File Transfer Mode

2.1 Desired Communication Mechanism

We want to program the SIO for asynchronous RS232 X-Modem protocol with these
parameters:

Baudrate: 9600 Baud/sec
Stopbits: 1

Startbits: 1

Character length: 8 bit

Parity: none

In difference to the character based mode described in part 1 (Terminal Mode) blocks of
128 byte size are to be transferred over the Null-Modem-Cable from the host PC to the
client, the Z80-machine. | choose the X-Modem protocol due to its robustness and easy
feasibility. Typical terminal programs like HyperTerminal, Kermit or Minicom do support the
X-Modem protocol.

Of course you can also transfer a file via character based mode but the transfer will take
much more time.

Regarding the device structure, Null-Modem-Cable, wiring and flow-control please refer to
section 1.1 on page 2 and 1.2 on page 3.

A web link to the description of the X-Modem protocol can be found in section 4 on page
19.

Note: For this mode the connection of the CPU pin /WAIT and the SIO pin
/Wait/Ready is required. Please see section 1.2.1 on page 3.

11

2.2 Programming

Four problems have to be solved: initializing the SI10, implementing the interrupt
mechanism, requesting the host to start the X-Modem transfer and load the file to a certain
RAM location.

2.2.1 Header

The header show below defines the hardware addresses of the data and control port of
your SIO and the address of your CTC channel 0. My hardware here uses the addresses
0x4, 0x6 and 0x0. Further on there is a RAM locations defined for counting bad blocks
while the file is being transferred.

SIO_A_D equ 4h
SIO_A_C equ 6h
CHO equ Oh
temp0 equ 1015h ;holds number of

;unsuccessful block transfers/block during download

Text 10: header

2.2.2 Interrupt Vector Table

Every time the SIO receives the first byte of a block it requests an interrupt causing the

CPU to jump to the memory address specified by the term BYTE_AVAILABLE. This is the
interrupt mode: interrupt on first character. Special receive conditions like receiver buffer
overrun cause a jump to location SPEC_BYTE_COND. The latter case aborts the transfer.

INT_VEC:
org 1Ch
DEFW BYTE_AVAILABLE
org 1Eh
DEFW SPEC_BYTE_COND

Text 11: SIO interrupt vector table

2.2.3 Initializing the CTC

Please read section 1.3.4 on page 7.

12

2.2.4 Initializing the CPU

Please read section 1.3.5 on page 7.

2.2.5 X-Modem File Transfer

The assembly code of this module is described in the following sections. Due to its
complexity | split it into parts shown in Text 12, 13 and 14 whose succession must not be
mixed. For detailed information on the purpose of certain registers and control bits please
read the SIO datasheet.

2.2.5.1 Host triggered transfer and setup

The host PC initiates the transfer. Using Minicom for example you press CTRL-A-S to get
into a menu where you select the x-modem protocol and afterward into the file menu to
select the file to be sent to the client. The procedure is similar with HyperTerminal.

After that the host waits for a NAK character sent by the client.

Now you should run the code shown below in Text 12 on your Z80-machine. This code
initializes the SIO for interrupt mode “interrupt on first received character”.

;set up TX and RX:

Id a,018h ;write into WRO: channel reset
out (SIO_A_C),A

Id a,004h :write into WRO: select WR4

out (SIO_A _C),A

Id a,44h ;44h write into WR4: clkx16,1 stop bit, no parity

out (SIO_A_C),A

Id a,005h ;write into WRO: select WR5

out (SIO_A_C),A

Id a,0E8h ;DTR active, TX 8bit, BREAK off, TX on, RTS inactive

out (SIO_A_C),A

Id a,01h ;write into WRO: select WR1

out (SIO_B_C),A

Id a,00000100b ;no interrupt in CH B, special RX condition affects vect
out (SI0_B_C),A

Id a,02h ;write into WRO: select WR2

out (SIO_B_C),A

Id a,10h ;write into WR2: cmd line int vect (see int vec table)

out (SIO_B_C),A ;bits D3,D2,D1 are changed according to RX condition

Text 12: setup 1

13

Now we do some settings for bad block counting, the first block number to expect and the
RAM destination address of the file to receive from the host. See Text 13. The destination

address setting is red colored. From this RAM location onwards the file is to be stored. Im

my example | use address 0x8000. Depending on your application you should change this
value.

sub A

Id (temp0),A ;reset bad blocks counter

Id C,1h ;C holds first block nr to expect

Id HL,8000h :set lower destination address of file

call SIO_A_El
call A_RTS_ON

call TX_NAK ;NAK indicates ready for transmission to host

Text 13: setup 2

Text 14 shows the code section that prepares the CPU for the reception of the first byte of
a data block. The line colored red makes the CPU waiting for an interrupt which is caused
by the SIO. The belonging interrupt service routine is shown in Text 15.

Once a block has been received, the checksum is verified and possible bad blocks
counted. The same data block is transferred maximal 10 times whereupon the transfer is
aborted.

14

REC_BLOCK:

;set block transfer mode

Id a,21h :write into WR0O cmd4 and select WR1
out (SIO_A_C),A
Id a,10101000b ;wait active, interrupt on first RX character

out (SIO_A_C),A ;buffer overrun is a spec RX condition

ei

call A RTS ON

halt ;await first rx char
call A RTS_OFF

Id a,01h ;write into WRO: select WR1
out (SIO_A C),A
Id a,00101000b ;wait function inactive

out (SIO_A C)A

;check return code of block reception (e holds return code)

Id a.e
cp 0 ;block finished, no error
ip z,l_210
cp 2 ;eot found
ip z,l 211
cp 3 ;chk sum error
ip z, 613
Id a,10h
ip |_612
| 210: call TX_ACK ;when no error
inc o ;prepare next block to receive
sub A
Id (temp0),A ;clear bad block counter
ip REC_BLOCK
_211: call TX_ACK ;on eot
Id A,01h
ip |_612
I 613: call TX_NAK ;on chk sum error
scf
ccf ;clear carry flag
Id DE,0080h ;subtract 80h
sbc HL,DE ;from HL, so HL is reset to block start address
Id A,(temp0) ;count bad blocks in temp0
inc A
Id (temp0),A
cp 09h
ip z,|_612 ;abort download after 9 attempts to transfer a block
ip REC_BLOCK ;repeat block reception
I_612:
DLD_END:

ret

Text 14: Receive Data Block

15

BYTE_AVAILABLE:

EXP_SOH_EOT:

in A,(SIO_A_D) ;read RX byte into A
|_205: cp 01h ;check for SOH

ip z,EXP_BLK_NR

cp 04h ;check for EQOT

ip nz,|_2020

Id e,2h

reti

;await block number

EXP_BLK_NR:
in A,(SIO_A_D) ;read RX byte into A
cp C ;check for match of block nr
ip nz,|_2020

;await complement of block number

Id AC ;copy block nr to expect into A
CPL ;and cpl A
Id E,A ;E holds cpl of block nr to expect

EXP_CPL_BLK_NR:

in A,(SIO_A_D) ;read RX byte into A
cp E ;check for cpl of block nr
ip nz,|_2020

;await data block

Id D,0h ;start value of checksum

Id B,80h ;defines block size 128byte
EXP_DATA:

in A,(SIO_A_D) ;read RX byte into A

Id (HL),A

add A,D ;update

Id D,A ;checksum in D

inc HL ;dest address +1

djnz EXP_DATA ;loop until block finished
EXP_CHK_SUM:

in A,(SIO_A_D) ;read RX byte into A
; Id a,045h ;for debug only

cp D ;check for checksum match

ip z,| 2021

Id e,3h

reti
|_2020: Id E,1h

RETI
|_2021: Id E,Oh

RETI ;return when block received completely

SPEC_BYTE_COND:
Id HL,DLD_END
push HL
reti

;in case of RX overflow prepare abort of transfer

Text 15: Interrupt Service Routine

16

2.2.5.2 Subroutines

Important for the X-Modem protocol is the sending of the Acknowledge and the Not-
Acknowledge character to the host machine. For all other routines used in the code above
please refer to sections 1.3.3 on page 6 and 1.3.6 on page 8.

TX_NAK:
Id a,15h ;send NAK 15h to host
out (SIO_A_D),A
call TX_EMP
RET
TX_ACK:
Id a,6h ;send AK to host
out (SIO_A_D),A
call TX_EMP
RET

Text 16: Acknowledge / Not-Acknowledge

17

3 Z80 IC equivalents table

An overview of ICs of the famous Z80 family gives Table 1.

device equivalent type

Z80-CPU BU18400A-PS (ROHM)
D780C-1(NEC)

KP1858BM1/2/3 / KR1858BM1/2/3 (USSR)
LHO0080 (Sharp)

MK3880x (Mostek)

T34VM1 / T34BM1 (USSR)
TMPZ84CO00AP-8 (Toshiba)
UA880 / UB880 / VB880D (MME)
20840004 (ZiLOG)

20840006 (ZiLOG)

Z80ACPUD1 (SGS-Ates)
Z84C00AB6 (SGS-Thomson)
Z84C00 (ZILOG)

Z8400A (Goldstar)

us4Co0 (MME)

Z80-SIO UA8560 , UB8560 (MME)
70844004 (ZILOG)
Z8440AB1 (ST)
70844006 (ZILOG)
Z84C40 (ZILOG)
U84C40 (MME)

Z80-PIO Z0842004/6 (ZILOG)
UA855 / UB855 (MME)
784C20 (ZILOG)
U84C20 (MME)

Z80-CTC Z84C30 (ZILOG)
U84C30 (MME)
UA857 / UB857 (MME)

Table 1: Z80 equivalents

18

4 Useful Links

+ A complete embedded Z80 system can be found at

http://www.train-z.de/train-z

The Free and Open Productivity Suite OpenOffice at http://www.openoffice.org

Z80 assembler for Linux and UNIX at http://www.unix4fun.org/z80pack/

The powerful communication tool Kermit at http://www.columbia.edu/kermit/
The Z80 history at http://en.wikipedia.org/wiki/Zilog_Z80
The X-Modem Protocol Reference

v ¢ ¥ ¢ &

at hitp://www.trainz.de/trainz/pdf/xymodem.pdf

#+ EAGLE - an affordable and very efficient
schematics and layout tool at
http://www.cadsoftusa.com/

5 Further Reading

| recommend to read these books:

“Using C-Kermit” / Frank da Cruz, Christine M. Gianone /
ISBN 1-55558-108-0 (english)

“C-Kermit : Einfihrung und Referenz” / Frank da Cruz, Christine M. Gianone /
ISBN 3-88229-023-4 (german)

6 Disclaimer

This tutorial is believed to be accurate and reliable. | do not assume responsibility for any
errors which may appear in this document. | reserve the right to change it at any time
without notice, and do not make any commitment to update the information contained
herein.

My Boss is a Jewish Carpenter

19

http://www.trainz.de/trainz/pdf/xymodem.pdf
http://en.wikipedia.org/wiki/Zilog_Z80
http://www.cadsoftusa.com/
http://www.columbia.edu/kermit/
http://www.unix4fun.org/z80pack/
http://www.openoffice.org/
http://www.train-z.de/train-z
http://www.train-z.de/train-z
http://www.cadsoftusa.com/

	 1 Terminal Mode
	 1.1 Desired Communication Mechanism
	 1.2 SIO Device Structure and external wiring
	 1.2.1 Wiring

	 1.3 Programming
	 1.3.1 Header
	 1.3.2 Interrupt Vector Table
	 1.3.3 Initializing the SIO
	 1.3.4 Initializing the CTC
	 1.3.5 Initializing the CPU
	 1.3.6 Hardware Flow Control
	 1.3.7 Disabling SIO RX-channel
	 1.3.8 Interrupt Service Routines
	 1.3.9 Transmission of a character to the host

	 2 File Transfer Mode
	 2.1 Desired Communication Mechanism
	 2.2 Programming
	 2.2.1 Header
	 2.2.2 Interrupt Vector Table
	 2.2.3 Initializing the CTC
	 2.2.4 Initializing the CPU
	 2.2.5 X-Modem File Transfer
	 2.2.5.1 Host triggered transfer and setup
	 2.2.5.2 Subroutines

	 3 Z80 IC equivalents table
	 4 Useful Links
	 5 Further Reading
	 6 Disclaimer

